About Us
Publications |
10 selected publications
1. Jia-Jia Zheng, Qiao-Zhi Li, Zhenzhen Wang, Xiaoli Wang, Yuliang Zhao and Xingfa Gao* Computer-aided Nanodrug Discovery: Recent Progress and Future Prospects, Chemical Society Reviews, 2024, 53, 9059-9132.
2. Xuejiao J. Gao, Yuliang Zhao, Xingfa Gao*, Catalytic Signal Transduction Theory Enabled Virtual Screening of Nanomaterials for Medical Functions, Accounts of Chemical Research, 2023, 56, 2366-2377.
3. Xiaomei Shen, Zhenzhen Wang, Xuejiao J. Gao, Xingfa Gao*, Reaction Mechanisms and Kinetics of Nanozymes: Insights from Theory and Computation, Advanced Materials, 2024, 36,2211151.
4. X. J. Gao, K. Ciura, Y. Ma, A. Mikolajczyk, K. Jagiello, Y. Wan, Y. Gao, J.-J. Zheng, S. Zhong*, T. Puzyn*, X. Gao*, Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers. Advanced Materials, 2024, 2407793.
5. Jia-Jia Zheng, Xiaoyu Wang, Zeqi Li, Xiaomei Shen, Gen Wei, Pufeihong Xia, Yi-Ge Zhou*, Hui Wei*, Xingfa Gao*, Integrated Computational and Experimental Framework for Inverse Screening of Candidate Antibacterial Nanomedicine, ACS Nano 2024,18, 1531-1542.
6. Zhenzhen Wang, Huan Meng, Xuejiao J. Gao, Jia-Jia Zheng, Xingfa Gao*, Remote Substituent Effects on Catalytic Activity of Metal-Organic Frameworks: A Linker Orbital Energy Model, npj Computational Materials, 2023, 9, 59.
7. Xiaoli Wang, Qiao-Zhi Li*, Jia-Jia Zheng, Xingfa Gao*, Two-Electron or Four-Electron Nanocatalysis for Aerobic Glucose Oxidation: A Mechanism-Driven Prediction Model, ACS Catalysis, 2024, 14, 13040–13048.
8. Qiao-Zhi Li, Huizhen Fan, Zhenzhen Wang, Jia-Jia Zheng, Kelong Fan, Xiyun Yan, and Xingfa Gao*,Mechanism and Kinetics-Guided Discovery of Nanometal Scissors to Cut Phosphoester Bonds,ACS Catalysis. 2023, 13, 504–514.
9. Shen, X.; Wang, Z.; Gao, X.*; Zhao, Y., Density Functional Theory-Based Method to Predict the Activities of Nanomaterials as Peroxidase Mimics. ACS Catalysis 2020, 10 (21), 12657-12665.
10. Wang, Z.; Wu, J.; Zheng, J. J.; Shen, X.; Yan, L.; Wei, H.; Gao, X.*; Zhao, Y., Accelerated Discovery of Superoxide-Dismutase Nanozymes Via High-Throughput Computational Screening. Nature Communications 2021, 12 (1), 6866.
2024
131. Jiali Liu, Xiaoli Wang, Yongfu Lian, Xue Wang, Xiuxiu Wang, Xingfa Gao*, Baoyun Sun*, Xihong Guo* Regulation of Graphdiyne-based Nanozymes with Enhanced Oxidase-like Activity by Cobalt and Nitrogen Codoping. Nano Research, 2024, http://doi.org/10.26599/NR.2025.94907063
130. Jiarong Guo, Hui Wang, Xiaoli Wang, Xiaoyu Zhang, Longwei Wang, Zhuo Wang, He Liu, Fene Gao, Xingfa Gao*, Xiaomei Ma*, Jing Liu* Nitrogen-Doped Bismuth Ferrite Nanozymes: Tailored Electronic Structure for Organic Pollutant Degradation, Nano Today, 2024, 58, 102413.
129. X. J. Gao, K. Ciura, Y. Ma, A. Mikolajczyk, K. Jagiello, Y. Wan, Y. Gao, J. Zheng, S. Zhong*, T. Puzyn*, X. Gao*, Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers. Advanced Materials, 2024, 2407793.
128. Jia-Jia Zheng, Qiao-Zhi Li, Zhenzhen Wang, Xiaoli Wang, Yuliang Zhao and Xingfa Gao* Computer-aided Nanodrug Discovery: Recent Progress and Future Prospects, Chemical Society Reviews, 2024, 53, 9059-9132.
127. Xiaoli Wang, Qiao-Zhi Li*, Jia-Jia Zheng, Xingfa Gao*, Two-Electron or Four-Electron Nanocatalysis for Aerobic Glucose Oxidation: A Mechanism-Driven Prediction Model, ACS Catalysis, 2024, 14, 13040–13048.
126. Kaizheng Feng, Zhenzhen Wang, Shi Wang, Guancheng Wang, Haijiao Dong, Hongliang He, Haoan Wu, Ming Ma*, Xingfa Gao* & Yu Zhang* Elucidating the Catalytic Mechanism of Prussian Blue Nanozymes with Self-increasing Catalytic Activity, Nature Communications, 2024, 15, 5908.
125. Jia-Jia Zheng, Feiyan Zhu, Ningning Song, Fang Deng, Qi Chen, Chen Chen, Jiuyang He*, Xingfa Gao*, Minmin Liang*. Optimizing the Standardized Assays for Determining the Catalytic Activity and Kinetics of Peroxidase-like Nanozymes, Nature Protocols, 2024, http://doi.org/10.1038/s41596-024-01034-7
124. Didar Baimanov, Su Li, Xuejiao J. Gao, Rui Cai, Ke Liu, Junjie Li, Yuchen Liu, Yalin Cong, Xiaoyu Wang, Fen Liu, Qi Li, Guofang Zhang, Hui Wei, Jian Wang, Chunying Chen, Xingfa Gao,* Yang Li,* Liming Wang*, A Phosphatase-like Nanomaterial Promotes Autophagy and Reprograms Macrophages for Cancer Immunotherapy. Chemical Science, 2024, 15, 10838-10850. http://doi.org/10.1039/d4sc01690d.
123. Jia-Jia Zheng, Xiaoyu Wang, Zeqi Li, Xiaomei Shen, Gen Wei, Pufeihong Xia, Yi-Ge Zhou*, Hui Wei*, Xingfa Gao*, Integrated Computational and Experimental Framework for Inverse Screening of Candidate Antibacterial Nanomedicine, ACS Nano 2024,18, 1531-1542.
122. Jia-Jia Zheng, Zhenzhen Wang, Xingfa Gao,* Nonradical Surface Chemistry Mechanisms for Catalytic Nanoparticles, The Journal of Physical Chemistry Letters, 2024, 15, 1887.
121. Xiaomei Shen, Zhenzhen Wang, Xuejiao J. Gao, Xingfa Gao*, Reaction Mechanisms and Kinetics of Nanozymes: Insights from Theory and Computation, Advanced Materials, 2024, 36,2211151.
2023
120. Xuejiao J. Gao, Yuliang Zhao, Xingfa Gao*, Catalytic Signal Transduction Theory Enabled Virtual Screening of Nanomaterials for Medical Functions, Accounts of Chemical Research, 2023, 56, 2366-2377. http://pubs.acs.org/doi/10.1021/acs.accounts.3c00339
119. Zhenzhen Wang, Huan Meng, Xuejiao J. Gao, Jia-Jia Zheng, Xingfa Gao*, Remote Substituent Effects on Catalytic Activity of Metal-Organic Frameworks: A Linker Orbital Energy Model, npj Computational Materials, 2023, 9, 59. http://doi.org/10.1038/s41524-023-01008-5.
118. Xuejiao J. Gao, Jun Yan, Jia-Jia Zheng, Shengliang Zhong, Xingfa Gao*,Clear-Box Machine Learning for Virtual Screening of 2D Nanozymes to Target Tumor Hydrogen Peroxide,Advanced Healthcare Materials, 2023, 12, 2202925. http://doi.org/10.1002/adhm.202202925
117.Qiao-Zhi Li, Huizhen Fan, Zhenzhen Wang, Jia-Jia Zheng, Kelong Fan, Xiyun Yan, and Xingfa Gao*,Mechanism and Kinetics-Guided Discovery of Nanometal Scissors to Cut Phosphoester Bonds,ACS Catalysis. 2023, 13, 504–514. http://pubs.acs.org/doi/10.1021/acscatal.2c05094
116. Cong Liu, Lin Gui, Jia-Jia Zheng, Yong-Qiang Xu, Benli Song, Li Yi, Yijiang Jia, Ayijiang Taledaohan, Yuji Wang, Xingfa Gao*, Zeng-Ying Qiao*, Hao Wang*, Zhiyong Tang*, Intrinsic Strain-mediated Ultrathin Ceria Nanoantioxidant, Journal of the American Chemical Society, 2023, 145, 19086.
115. Xinshuang Gao, Jiajia Zheng, Hanbo Li, Rui Cai, Xingfa Gao*, and Xiaochun Wu*, Plasmonic Nanostructures Scting As a Light-Driven O2-Sensitive Nitroreductase Mimic for Enhanced Photochemical Oxidation of Para-Aminothiophenol, Nano Research, 2023, in press, http://doi.org/10.1007/s12274-023-6110-3.
114. Kelong Fan*, Lizeng Gao*, Hui Wei*, Bing Jiang*, Daji Wang*, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang*, Xingfa Gao*, Minmin Liang*, Yu Zhang*, Haiyan Xu*, Xiaogang Qu*, Xiyun Yan* Nanozymes, Progress in Chemistry, 2023, 35, 1-87.
113. Wei Xu, Jia-Jia Zheng, Yu-An Li, Xingfa Gao*, Xiaobo Ji, Yi-Ge Zhou* Nano-Impact Electrochemistry Reveals Kinetics Information of Metal-Ion Battery Materials with Multiple Redox Centers, Angewandte Chemie International Edition, 2023, DOI: 10.1002/anie.202306185.
112. Guolong Xing, Jingjuan Liu, Yi Zhou, Shuai Fu, Jia-Jia Zheng, Xi Su, Xingfa Gao, Osamu Terasaki, Mischa Bonn, Hai I. Wang, and Long Chen*, Conjugated Nonplanar Copper-Catecholate Conductive Metal–Organic Frameworks via Contorted Hexabenzocoronene Ligands for Electrical Conduction, Journal of the American Chemical Society 2023, 145, 16, 8979–8987.
111. Wenhui Gao, Jiuyang He, Lei Chen, Xiangqin Meng, Yana Ma, Liangliang Cheng, Kangsheng Tu, Xingfa Gao, Cui Liu*, Mingzhen Zhang*, Kelong Fan*, Dai-Wen Pang* & Xiyun Yan*, Deciphering the Catalytic Mechanism of Superoxide Dismutase Activity of Carbon Dot Nanozyme, Nature Communications, 2023, 14, 160. http://doi.org/10.1038/s41467-023-35828-2
110. Yusen Li, Xi Su, Wenhao Zheng, Jia-Jia Zheng, Linshuo Guo, Mischa Bonn, Xingfa Gao, Hai I. Wang, Long Chen*, Targeted Synthesis of Isomeric Naphthalene-Based 2D Kagome Covalent Organic Frameworks, Angewandte Chemie International Edition 2023, 135, e202216795., http://doi.org/10.1002/anie.202216795
2022
109. Peng Li, Xuejiao J. Gao*, and Xingfa Gao*, Theoretical Investigation on the Oxidoreductase-Mimicking Activity of Carbon-Based Nanozyme, in "Nanozymes: Design, Synthesis, and Applications", Chapter 3pp 67-89. http://pubs.acs.org/doi/10.1021/bk-2022-1422.ch003
108. Liang, H.-W.; Jia, T.; Wang, Z.-Z.; Wang, J.-Q.; Hou, D.-Y.; Wang, L.; Gao, X.*; Sun, H.-L.*; Wang, H.*, Anti-Solvatochromic and Highly Emissive Twisted D–A Structure with Intramolecular Hydrogen Bond. Materials Chemistry Frontiers 2022, 6 (4), 512-518. http://doi.org/10.1039/D1QM01530C
107. Quan Wang, Chunyu Li, Xiaoyu Wang, Jun Pu, Shuo Zhang, Like Liang, Lina Chen, Ronghua Liu, Wenbin Zuo, Huigang Zhang, Yanhong Tao, Xingfa Gao, and Hui Wei*, eg Occupancy as a Predictive Descriptor for Spinel Oxide Nanozymes, Nano Letter, 2022, 22, 24, 10003–10009. http://doi.org/10.1021/acs.nanolett.2c03598
106. Gao, M.; Liu, X.; Wang, Z.; Wang, H.; Asset, T.; Wu, D.; Jiang, J.; Xie, Q.; Xu, S.; Cai, X.; Li, J.; Wang, W.; Zheng, H.; Gao, X.; Tarasenko, N.; Rotonnelli, B.; Gallet, J.-J.; Jaouen, F.; Li, R.*, Engineering Catalytic Dephosphorylation Reaction for Endotoxin Inactivation. Nano Today 2022, 44, 101456. http://doi.org/10.1016/j.nantod.2022.101456
105. He, Z.; Ye, F.; Zhang, C.; Fan, J.; Du, Z.; Zhao, W.; Yuan, Q.; Niu, W.; Gao, F.; He, B.; Cao, P.; Zhao, L.; Gao, X.; Gao, X.; Sun, B.; Dong, Y.; Zhao, J.; Qi, J.; Liang, X.-J.*; Gao, X.*, A Comparison of Remdesivir Versus Gold Cluster in COVID-19 Animal Model: A Better Therapeutic Outcome of Gold Cluster. Nano Today 2022, 44, 101468. http://doi.org/10.1016/j.nantod.2022.101468
104. Li, J.; Gao, X.; Wang, Y.; Xia, T.; Zhao, Y.; Meng, H.*, Precision Design of Engineered Nanomaterials to Guide Immune Systems for Disease Treatment. Matter 2022, 5 (4), 1162-1191. http://doi.org/10.1016/j.matt.2022.03.005.
103. Ma, C.-B.; Xu, Y.; Wu, L.; Wang, Q.; Zheng, J.-J.; Ren, G.; Wang, X.; Gao, X.; Zhou, M.*; Wang, M.*; Wei, H.*, Guided Synthesis of a Mo/Zn Dual Single-Atom Nanozyme with Synergistic Effect and Peroxidase-like Activity. Angewandte Chemie International Edition 2022, 61 (25), e202116170. http://doi.org/10.1002/anie.202116170
2021
102. Wang, Z.; Wu, J.; Zheng, J. J.; Shen, X.; Yan, L.; Wei, H.; Gao, X.*; Zhao, Y., Accelerated Discovery of Superoxide-Dismutase Nanozymes Via High-Throughput Computational Screening. Nature Communications 2021, 12 (1), 6866. http://www.nature.com/articles/s41467-021-27194-8
101. Wu, J.; Wang, Z.; Jin, X.; Zhang, S.; Li, T.; Zhang, Y.; Xing, H.; Yu, Y.; Zhang, H.; Gao, X.*; Wei, H.*, Hammett Relationship in Oxidase-Mimicking Metal-Organic Frameworks Revealed through a Protein-Engineering-Inspired Strategy. Advanced Materials 2021, 33 (3), e2005024. http://onlinelibrary.wiley.com/doi/10.1002/adma.202005024
100. Wei, Y.; Gao, X.; Zhao, F.; Baimanov, D.; Cong, Y.; Jiang, Y.; Hameed, S.; Ouyang, Y.; Gao, X.*; Lin, X.*; Wang, L.*, Induced Autophagy of Macrophages and the Regulation of Inflammatory Effects by Perovskite Nanomaterial LaNiO3. Frontiers in Immunology 2021, 12, 676773. http://www.frontiersin.org/articles/10.3389/fimmu.2021.676773/full
99. Chen, Y.; Shen, X.; Carmona, U.; Yang, F.; Gao, X.*; Knez, M.*; Zhang, L.*; Qin, Y., Control of Stepwise Hg2+ Reduction on Gold to Selectively Tune its Peroxidase and Catalase‐Like Activities and the Mechanism. Advanced Materials Interfaces 2021, 8 (11), 2100086. http://onlinelibrary.wiley.com/doi/10.1002/admi.202100086
98. Wang, Z.; Shen, X.; Gao, X.*, Density Functional Theory Mechanistic Insight into the Peroxidase- and Oxidase-like Activities of Nanoceria. The Journal of Physical Chemistry C 2021, 125 (42), 23098-23104. http://pubs.acs.org/doi/10.1021/acs.jpcc.1c04878
97. Li, C.; Li, P.; Li, L.; Wang, D.; Gao, X.*; Gao, X. J.*, A GGA + U Investigation into the Effects of Cations on the Electromagnetic Properties of Transition Metal Spinels. RSC Advances 2021, 11 (35), 21851-21856. http://pubs.rsc.org/en/content/articlelanding/2021/ra/d1ra03621a#!
96. Chitumalla, R. K.; Kim, K.; Gao, X.*; Jang, J.*, A Density Functional Theory Study on The Underwater Adhesion of Catechol onto A Graphite Surface. Physical Chemistry Chemical Physics 2021, 23 (2), 1031-1037. http://pubs.rsc.org/en/content/articlelanding/2021/cp/d0cp05623e
95. Meng, X.; Li, D.; Chen, L.; He, H.; Wang, Q.; Hong, C.; He, J.; Gao, X.; Yang, Y.; Jiang, B.; Nie, G.*; Yan, X.*; Gao, L.*; Fan, K.*, High-Performance Self-Cascade Pyrite Nanozymes for Apoptosis-Ferroptosis Synergistic Tumor Therapy. ACS Nano 2021, 15 (3), 5735-5751. http://pubs.acs.org/doi/10.1021/acsnano.1c01248+
94. Zhang, R.; Chen, L.; Liang, Q.; Xi, J.; Zhao, H.; Jin, Y.; Gao, X.; Yan, X.*; Gao, L.*; Fan, K.*, Unveiling the Active Sites on Ferrihydrite with Apparent Catalase-Like Activity for Potentiating Radiotherapy. Nano Today 2021, 41, 101317. http://www.sciencedirect.com/science/article/pii/S1748013221002425
93. Zhou, X.; You, M.; Wang, F.; Wang, Z.; Gao, X.; Jing, C.; Liu, J.; Guo, M.; Li, J.; Luo, A.*; Liu, H.*; Liu, Z.*; Chen, C.*, Multifunctional Graphdiyne-Cerium Oxide Nanozymes Facilitate MicroRNA Delivery and Attenuate Tumor Hypoxia for Highly Efficient Radiotherapy of Esophageal Cancer. Advanced Materials 2021, 33 (24), e2100556. http://onlinelibrary.wiley.com/doi/full/10.1002/adma.202100556
92. Yao, H.; Yao, H.; Huang, H.; Zhang, L.; Cui, R.; Guo, X.; Cheng, H.; Li, Y.; Li, X.*; Gao, X.; Zhao, L.*; Sun, B.*, Carbon Phase Adjustment by Multi-Configuration Ligand in Endohedral Metallofullerene Derivatives Gd@C82(morpholine)7 Under High Pressure. Nano Today 2021, 37, 101079. http://www.sciencedirect.com/science/article/pii/S1748013221000049
2020
91. Shen, X.; Wang, Z.; Gao, X.*; Zhao, Y., Density Functional Theory-Based Method to Predict the Activities of Nanomaterials as Peroxidase Mimics. ACS Catalysis 2020, 10 (21), 12657-12665. http://pubs.acs.org/doi/10.1021/acscatal.0c03426
90. Gao, M.; Wang, Z.; Zheng, H.; Wang, L.; Xu, S.; Liu, X.; Li, W.; Pan, Y.; Wang, W.; Cai, X.; Wu, R.; Gao, X.*; Li, R.*, Two-Dimensional Tin Selenide (SnSe) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism. Angewandte Chemie International Edition 2020, 59 (9), 3618-3623. http://onlinelibrary.wiley.com/doi/10.1002/anie.201913035
89. Liu, J.; Wang, L.; Shen, X.; Gao, X.*; Chen, Y.; Liu, H.*; Liu, Y.; Yin, D.; Liu, Y.; Xu, W.; Cai, R.; You, M.; Guo, M.; Wang, Y.; Li, J.; Li, Y.; Chen, C.*, Graphdiyne-Templated Palladium-Nanoparticle Assembly as a Robust Oxygen Generator to Attenuate Tumor Hypoxia. Nano Today 2020, 34, 100907. http://www.sciencedirect.com/science/article/pii/S1748013220300761
88. Wang, X.; Gao, X.*, Substituent Effects on Electronic Structures and Peroxidase-Mimicking Activities of Graphyne and Palladium-Doped Graphyne: A Computational Study. The Journal of Physical Chemistry C 2020, 124 (18), 9917-9923. http://pubs.acs.org/doi/10.1021/acs.jpcc.0c00542
87. 李玲丽,高兴发*, sp2 碳分子 π电子构型和富勒醇结构模型. 化学通报 2020, 83 (4), 356-359. http://www.hxtb.org/ch/reader/view_abstract.aspx?file_no=20191220002&flag=1
85. Song, X.; Wang, D.; Gao, X. J.*; Gao, X., Clar Model Modified for Nanographenes. Chemical Physics Letters 2020, 750, 137487. http://www.sciencedirect.com/science/article/pii/S0009261420304024
84. Pei-Pei Yang, K. Z., Ping-Ping He, Yu Fan, Xuejiao J. Gao, Xingfa Gao, Zi-Ming Chen, Da-Yong Hou1, Yuan Li1, Yu Yi, Dong-Bing Cheng, Jing-Ping Zhang, Linqi Shi, Xian-Zheng Zhang, Lei Wang*, Hao Wang*, A Biomimetic Platelet Based on Assembling Peptides Initiates Artificial Coagulation. Science Advances 2020, 6. eaaz4107 http://www.science.org/doi/10.1126/sciadv.aaz4107
83. Liang, Q.; Xi, J.; Gao, X. J.; Zhang, R.; Yang, Y.; Gao, X.; Yan, X.*; Gao, L.*; Fan, K.*, A Metal-Free Nanozyme-Activated Prodrug Strategy for Targeted Tumor Catalytic Therapy. Nano Today 2020, 35, 100935. http://www.sciencedirect.com/science/article/pii/S1748013220301043
82. Fu, X.; Wang, D.; Song, X.; Gao, X.; Jang, J.*; Gao, X. J.*, Boron-Based Metallocene-Like Molecules and Nanowires: A Computational Study. Chemical Physics Letters 2020, 747, 137336. http://www.sciencedirect.com/science/article/pii/S0009261420302517
81. Cheng, Y.; Kong, X.; Chang, Y.; Feng, Y.; Zheng, R.; Wu, X.; Xu, K.; Gao, X.; Zhang, H.*, Spatiotemporally Synchronous Oxygen Self-Supply and Reactive Oxygen Species Production on Z-Scheme Heterostructures for Hypoxic Tumor Therapy. Advanced Materials 2020, 32 (11), e1908109. http://onlinelibrary.wiley.com/doi/10.1002/adma.201908109
80. Wang, Z.; Shen, X.; Gao, X.*; Zhao, Y., Simultaneous Enzyme Mimicking and Chemical Reduction Mechanisms for Nanoceria As a Bio-Antioxidant: A Catalytic Model Bridging Computations and Experiments for Nanozymes. Nanoscale 2019, 11 (28), 13289-13299. http://pubs.rsc.org/en/content/articlelanding/2019/NR/C9NR03473K
79. Liu, J.; Shen, X.; Baimanov, D.; Wang, L.; Xiao, Y.; Liu, H.; Li, Y.; Gao, X.*; Zhao, Y.; Chen, C.*, Immobilized Ferrous Ion and Glucose Oxidase on Graphdiyne and Its Application on One-Step Glucose Detection. ACS Applied Materials & Interfaces 2019, 11 (3), 2647-2654. http://pubs.acs.org/doi/10.1021/acsami.8b03118
78. Wang, X.; Gao, X. J.; Qin, L.; Wang, C.; Song, L.; Zhou, Y. N.; Zhu, G.; Cao, W.; Lin, S.; Zhou, L.; Wang, K.; Zhang, H.; Jin, Z.; Wang, P.; Gao, X.; Wei, H.*, eg Occupancy As an Effective Descriptor for the Catalytic Activity of Perovskite Oxide-Based Peroxidase Mimics. Nature Communications 2019, 10 (1), 704. http://www.nature.com/articles/s41467-019-08657-5
2018
78. Kong, X. P.; Shen, X.; Jang, J.*; Gao, X.*, Electron Pair Repulsion Responsible for the Peculiar Edge Effects and Surface Chemistry of Black Phosphorus. Journal of Physical Chemistry Letters 2018, 9 (5), 947-953. http://pubs.acs.org/doi/10.1021/acs.jpclett.8b00128
77. Hu, Y.; Gao, X. J.; Zhu, Y.; Muhammad, F.; Tan, S.; Cao, W.; Lin, S.; Jin, Z.; Gao, X.*; Wei, H.*, Nitrogen-Doped Carbon Nanomaterials as Highly Active and Specific Peroxidase Mimics. Chemistry of Materials 2018, 30 (18), 6431-6439. http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.8b02726
76. Li, C.; Gao, X. J.; Yao, H.; Huang, H.; Cui, R.; Guo, X.; Zhang, L.; Liu, B.; Xu, B.; Shi, W.; Dong, J.; Feng, L.*; Gao, X.*; Sun, B.*, Highly Delocalized Endohedral Metal in Gd@C2v(9)-C82 Metallofullerenes co-Crystallized with α-S8. Nano Research 2018, 11 (4), 2277-2284. http://link.springer.com/article/10.1007/s12274-017-1849-z
75. Xiaomei Shen, X. G., Xingfa Gao*, Theoretical Studies on The Mechanisms of The Enzyme-like Activities of Precious-metal and Carbon Nanomaterials. Progress in Biochemistry and Biophysics 2018, 45 (2), 204-217. http://en.cnki.com.cn/Article_en/CJFDTotal-SHSW201802008.htm
74. Chen, W. H.; Gao, X. J.*; Gao, X.*, Methanol-Assisted Phthalimide Ring Opening: Concerted or Stepwise Mechanism? The Journal of Physical Chemistry A 2018, 122 (12), 3115-3119. http://pubs.acs.org/doi/10.1021/acs.jpca.7b11347
73. Wang, Z.; Gao, X.*; Zhao, Y.*, Mechanisms of Antioxidant Activities of Fullerenols from First-Principles Calculation. The Journal of Physical Chemistry A 2018, 122 (41), 8183-8190. http://pubs.acs.org/doi/10.1021/acs.jpca.8b06340
72. Liu, H.; Gao, X.*; Zhao, Y., Boron and Nitrogen Co-Doping of Graphynes without Inducing Empty or Doubly Filled States in π-Conjugated Systems. The Journal of Physical Chemistry C 2018, 123 (1), 625-630. http://pubs.acs.org/doi/10.1021/acs.jpcc.8b10684
70. Xu, Z.; Qiu, Z.; Liu, Q.; Huang, Y.; Li, D.; Shen, X.; Fan, K.; Xi, J.; Gu, Y.; Tang, Y.; Jiang, J.; Xu, J.; He, J.; Gao, X.; Liu, Y.; Koo, H.; Yan, X.; Gao, L.*, Converting Organosulfur Compounds to Inorganic Polysulfides Against Resistant Bacterial Infections. Nature Communications 2018, 9 (1), 3713. http://www.nature.com/articles/s41467-018-06164-7
69. Xiaju Cheng, X. N., Renfei Wu, Yu Chong, Xingfa Gao, Cuicui Ge*, Jun-Jie Yin, Evaluation of the Structure–Activity Relationship of Carbon Nanomaterials as Antioxidants. Nanomedicine 2018. 13(7):733-747. http://pubmed.ncbi.nlm.nih.gov/29542368/
68. Fang, G.; Li, W.; Shen, X.; Perez-Aguilar, J. M.; Chong, Y.; Gao, X.; Chai, Z.; Chen, C.*; Ge, C.*; Zhou, R.*, Differential Pd-Nanocrystal Facets Demonstrate Distinct Antibacterial Activity Against Gram-Positive and Gram-Negative Bacteria. Nature Communications 2018, 9 (1), 129. http://www.nature.com/articles/s41467-017-02502-3
2017
66. Gao, X.*; Shen, X., Face-to-Face Crosslinking of Graphdiyne and Related Carbon Sheets Toward Integrated Graphene Nanoribbon Arrays. Carbon 2017, 125, 536-543. http://www.sciencedirect.com/science/article/pii/S0008622317309806
65. Gao, X.*; Gao, X. J., Metal-like Boronic-Organic Frameworks: A Design and Computation. Inorganic Chemistry 2017, 56 (5), 2490-2495. http://pubs.acs.org/doi/10.1021/acs.inorgchem.6b02639
63. Gao, X. J.; Gao, X.*, Computational Study on the Mechanisms of Multiple Complexation of CO and Isonitrile Ligands to Boron. The Journal of Physical Chemistry A 2017, 121 (13), 2688-2697. http://pubs.acs.org/doi/10.1021/acs.jpca.7b01313
2016
62. Gao, X.; Chen, B.-Z.; Gao, X.*, Isolated Aromatic Patches as A Rule to Select Metallofullerene Multiple Adducts with High Chemical Stabilities. Carbon 2016, 96, 980-986. http://www.sciencedirect.com/science/article/pii/S0008622315303638
61. Ge, C.; Fang, G.; Shen, X.; Chong, Y.; Wamer, W. G.; Gao, X.*; Chai, Z.; Chen, C.*; Yin, J. J.*, Facet Energy versus Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano 2016, 10 (11), 10436-10445. http://pubs.acs.org/doi/10.1021/acsnano.6b06297
59. Gao, X. J.; Shen, X.; Chen, B.-Z.*; Gao, X.*, Improved Description for the Structures of Fullerenols C60(OH)n (n = 12–48) and C2v(9)-C82(OH)x (x = 14–58). The Journal of Physical Chemistry C 2016, 120 (21), 11709-11715. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b02506
2015
58. Shen, X.; Liu, W.; Gao, X.; Lu, Z.; Wu, X.*; Gao, X.*, Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen. Journal of the American Chemical Society 2015, 137 (50), 15882-15891.